

	Visão geral dos filtros de pressão SF / SF-TM / SFA / SFZ / SMPF		36		Filtros de média pressão (Inline) SFA Max. 160 bar / 2320 PSI Max. 240 I/min / 70 US GPM	49 - 52
	Filtros de alta pressão (Inline) Max. 420 bar / 6000 PSI Max. 1135 I/min / 300 US GPM	SF	37 - 40	S CHANAI	Dados técnicos / Dimensões	50 - 51
ā	Dados técnicos / Medições		38 - 39		Código para pedido - Filtros de média pressão	52
	Código para pedido - Filtro de alta pressão		40		Código para pedido - Elementos filtrantes	52
	Código para pedido - Elementos filtrantes		40		Válvulas (para SF / SF-TM / SFA / SFZ) HV	53
	Filtros de alta pressão (Top-mounted) Max. 315 bar / 4560 PSI Max. 1135 I/min / 300 US GPM	SF-TM	41 - 44		Indicadores de contaminação (para SF / SF-TM / SFA/ SFZ)	54 - 55
	Dados técnicos / Medições		42 - 43		HI Curvas características do fluxo SF / SF-TM / SFA / SFZ	56 - 58
	Código para pedido - Filtro de alta pressão		44	9. 3°	Filtros de média pressão (Inline) Max. 110 bar / 1600 PSI Max. 90 l/min / 25 US GPM	59 - 62
	Código para pedido - Elementos filtrantes		44	U	Dados técnicos / Medições	60 - 61
	Filtros de alta pressão (Sandwich) Max. 315 bar / 4560 PSI Max. 30 l/min / 8 US GPM	SFZ	45 - 48		Código para pedido - Filtros de média pressão	62
ı	Dados técnicos / Medições		46 - 47		Código para pedido - Elementos filtrantes	62
	Código para pedido - Filtro de alta pressão		48		Indicadores de contaminação	63
	Código para pedido - Elementos filtrantes		48		Curvas características do fluxo SMPF	64
					Lista de verificação para projeção de carcaças de filtro	65

Descrição

Os filtros de pressão foram projetados para a montagem de manifold ou para a montagem em linha em instalações hidráulicas e de óleo de lubrificação. Estes são posicionados diretamente após a bomba e limpam o óleo hidráulico a após a bomba, antes de este passar pelos componentes subsequentes, tais como válvulas, cilindros e etc.. A principal razão da filtragem de pressão é a proteção dos componentes sensíveis. As partículas de desgaste provenientes da bomba são imediatamente removidas do óleo hidráulico. Para além da sua função como filtro de proteção, os filtros de pressão destinam-se também a manter a classe de pureza exigida.

Devido à sua posição diretamente a seguir à bomba, os filtros de pressão devem resistir à pressão máxima do sistema. O elemento filtrante situado no filtro de pressão deve igualmente resistir às cargas e é construído de forma mais complexa do que, por exemplo, o do filtro de

Os filtros de pressão STAUFF estão disponíveis em diferentes versões, dimensões e configurações.

Compatibilidade de fluidos

Óleos minerais, outros fluidos sob consulta.

Opções e acessórios

Válvulas

Disponível com válvula by-pass, reversível, de retenção ou multifuncional

Indicador de contaminação

• Sob consulta, com Indicador de contaminação visual, elétrico ou visual/ elétrico.

- Filtros de alta pressão, projetados para a montagem em linha
- Furos na parte superior do cabeçote e conexões laterais de fluido
- Também disponível opcionalmente com copo do filtro de duas peças
- Pressão de trabalho: max. 420 bar / 6000 PSI
- Fluxo nominal: max, 1135 I/min / 300 US GPM
- Materiais: cabeçote do filtro em fundição modular, copo do filtro em aço extrudado a frio
- rosca BSP, NPT, SAE ou flange SAE Conexões:

(ISO 6162-1/2)

- Filtros de média pressão, projetados para a montagem em linha
- Furos na parte superior do cabeçote e conexões laterais de fluido
- Construção leve, peso reduzido
- Pressão de trabalho: max. 160 bar / 2320 PSI
- Fluxo nominal: max. 240 I/min / 70 US GPM
- Materiais: cabeçote e copo do filtro em alumínio

rosca BSP, NPT, SAE ou Conexões: flange SAE (ISO 6162-1)

Tipo SF-TM

- Filtros de alta pressão, projetados para a montagem em
- Também disponível opcionalmente com copo do filtro de duas peças
- Pressão de trabalho: max. 315 bar / 4560 PSI
- max. 1135 I/min / 300 US GPM Fluxo nominal:
- Materiais: cabeçote do filtro em fundição modular, copo do filtro em aço extrudado a frio

Tino SMPF

- · Filtros de média pressão, projetados para a montagem em
- Pressão de trabalho: max. 110 bar / 1600 PSI ■ Fluxo nominal: max. 90 I/min / 25 US GPM
- Materiais: cabeçote e copo do filtro em alumínio
- Rosca BSP, SAE Conexões:

- Filtros de alta pressão, projetados para montagem de placas intermediárias em manifold
- Disponível versão esquerda ou direita
- Pressão de trabalho: max. 315 bar / 4560 PSI
- max. 30 l/min / 8 US GPM Fluxo nominal:
- Materiais: cabeçote do filtro em aço,

copo do filtro em aço extrudado a frio

Filtros de alta pressão • Tipo SF

Descrição

Os filtros de alta pressão SF STAUFF foram projetados para a montagem em linha em instalações hidráulicas com uma pressão de trabalho máxima de até 420 bar/ 6000 PSI. Em conjunto com os Elementos filtrantes SE STAUFF está garantida uma elevada eficiência na separação de partículas sólidas. A elevada capacidade de retenção de sujidade garante uma vida útil longa, prevenindo assim os custos de manutenção.

Dados técnicos

• Projetado para a montagem em linha com furos na parte superior do cabeçote.

Materiais

Fundição nodular Cabecote: Copo do filtro: Aço extrudado a frio • 0-rings: NBR (Buna-N®)

FKM/FPM/FPM (Viton®)

EPDM (Monômero de etileno-propileno-dieno)

PTFE (politetrafluoroetileno) Anel de apoio:

Conexões

- BSP
- NPT
- Rosca O-ring SAE
- Flange SAE 3000 PSI (Código 61)
- Flange SAE 6000 PSI (Código 62)

Outras conexões sob consulta.

Pressão de trabalho

Max. 420 bar / 6000 PSI

Pressão de ruptura

Min. 1260 bar / 18275 PSI

Faixa de temperatura

■ -10 °C ... +100 °C / +14 °F ... +212 °F

Elementos filtrantes

■ Especificações, ver página 40

Compatibilidade com os fluidos

• Óleos minerais, outros fluidos sob consulta.

Opções e acessórios

Válvulas

Derivação do elemento filtrante contaminado ao atingir a Válvula by-pass :

pressão de abertura de $6^{+0.5}$ bar / $87^{+7.25}$ PSI Δp . Outras pressões de abertura sob consulta

Válvula de retenção: Previne o esvaziamento da tubulação seguinte durante a

substituição de um elemento.

• Válvula de fluxo reverso: Derivação do elemento filtrante na direção de fluxo inversa.

Válvula

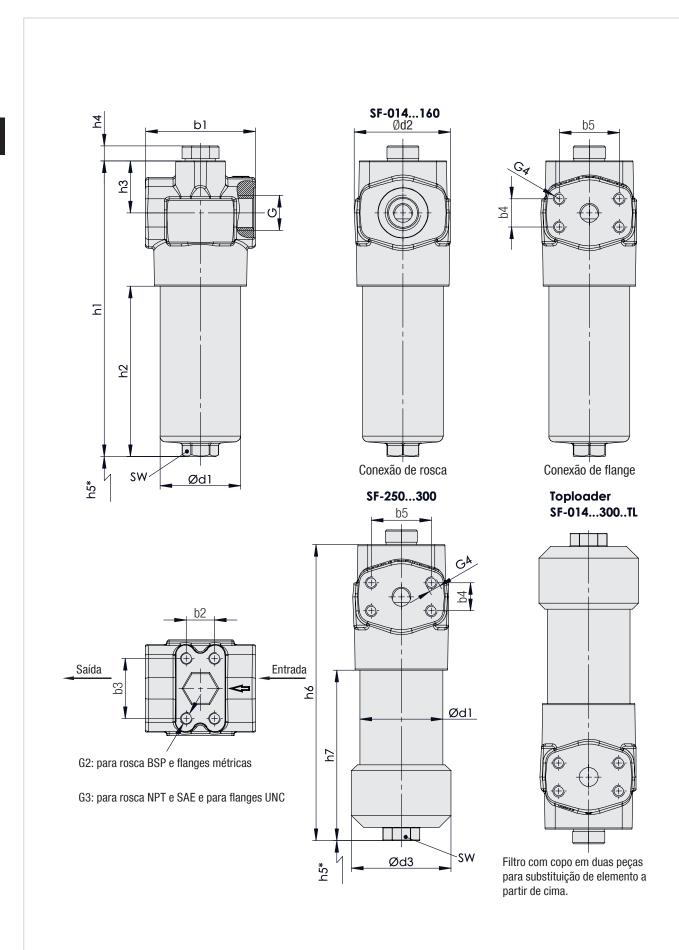
Pressão de abertura de 6 $^{\rm +0,5}$ bar / 87 $^{\rm +7.25}$ PSI multifuncional:

Válvula de fluxo reverso e de retenção com by-pass combinadas

numa única válvula.

Indicador de contaminação

Pressão padrão:


 $\begin{array}{l} 5 \\ _{-0,5} \, bar \, / \, 72.5 \\ -0.01 \, cm \end{array} \\ \begin{array}{l} PSI \, \Delta p \\ Outras \, pressões \, de \, arranque \, sob \, consulta. \end{array}$

 Indicadores de pressão diferencial

disponíveis: Visual Flétrico

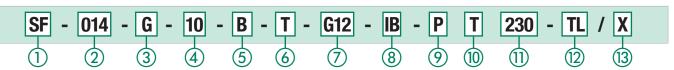
> Visual-Elétrico (24 V DC, 110 V AC, 230 V AC) Visual / elétrico de dois níveis (24 V DC)

Filtros de alta pressão - Tipo SF

^{*} Espaço recomendado para substituição de elementos

Filtros de alta pressão • Tipo SF

Conexão de rosca G	Dimensão nominal SF										
	014	030	045	070	125	090	130	160	250	300	
BSP	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	
NPT	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	
Rosca 0-ring SAE	1-1/16-12	1-1/16-12	1-5/8-12	1-5/8-12	1-5/8-12	1-7/8-12	1-7/8-12	1-7/8-12	1-7/8-12	1-7/8-12	
Flange SAE 3000 PSI	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	
Flange SAE 6000 PSI	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	
Peso (kg/lbs) Elemento e copo do filtro	5	5,9	10,3	12	16,3	27	30,2	35,5	-	-	
simples	11	13	22.7	26.5	35.9	59.9	66.6	78.3	-	-	
Peso (kg/lbs)	5,6	6,6	12,2	13,7	20	32	-	39,3	49	57,3	
Elemento e copo do filtro em duas peças	12.3	14.6	26.9	30.2	44.1	70.5	-	86.5	108	126.3	


		Dimensão nor	ninal SF								
Dimensões (mm/pol.)		014	030	045	070	125	090	130	160	250	300
		93	93	128	128	128	178	178	178	178	178
b1		3.66	3.66	5.04	5.04	5.04	7.01	7.01	7.01	7.01	7.01
		81	81	116	116	116	159	159	159	159	159
d2		3.19	3.19	4.57	4.57	4.57	6.26	6.26	6.26	6.26	6.26
		44	44	49,5	49,5	49,5	72	72	72	72	72
h3		1.73	1.73	1.95	1.95	1.95	2.84	2.84	2.84	2.84	2.84
		12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5
h4		.49	.49	.49	.49	.49	.49	.49	.49	.49	.49
		68	68	95	95	-	130	130	130	130	130
	d1	2.68	2.68	3.74	3.74	-	5.12	5.12	5.12	5.12	5.12
<u>8</u>		184	250	239	298	-	323	416	494	-	-
E	h1	7.24	9.84	9.41	11.73	-	12.72	16.38	19.45	-	-
Com copo do filtro simples série SF	h0	78	144	103	161	-	148	241	319	-	-
o do filtro série SF	h2	3.07	5.67	4.06	6.34	-	5.83	9.5	12.56	-	-
séri	****	100	170	140	200	-	190	290	360	-	-
obc	rec.*	3.94	6.69	5.51	7.87	-	7.48	11.42	14.17	-	-
Ē	h5	85	85	120	120	-	150	150	150	-	-
3	min.*	3.35	3.35	4.72	4.72	-	5.91	5.91	5.91	-	-
	SW	27	27	32	32	-	36	36	36	36	36
	SW	1.06	1.06	1.26	1.26	-	1.42	1.42	1.42	1.42	1.42
	.14	70	70	101,6	101,6	101,6	133	-	133	133	133
ças	d1	2.76	2.76	4	4	4	5.24	-	5.24	5.24	5.24
<u> </u>	d3	84	84	115	115	115	155	-	155	155	155
nas		3.31	3.31	4.53	4.53	4.53	6.10	-	6.10	6.10	6.10
<u> </u>	h5	65	130	100	160	340	120	-	290	425	590
SF.	IIO	2.56	5.12	3.94	6.30	13.39	4.72	-	11.42	16.73	23.23
ao Intro em série SFT	h6	184	250	241	300	485	329,5	-	500,5	656,5	821,5
com copo do nitro em duas peças série SFTL	110	7.27	9.84	9.49	11.81	19.10	12.97	-	19.71	25.85	32.34
ò	h7	78	144	103	163	344	154,5	-	325,5	481,5	646,5
Ē	1117	3.07	5.67	4.06	6.42	13.54	6.08	-	12.82	18.96	25.45
3	Hex	27	27	32	32	32	36	-	36	36	36
	1164	1.06	1.06	1.26	1.26	1.26	1.42	-	1.42	1.42	1.42
e _	b4	22,3	22,3	30,2	30,2	30,2	35,7	35,7	35,7	35,7	35,7
- S		.88	.88	1.87	1.87	1.87	1.41	1.41	1.41	1.41	1.41
8 S	b5	47,6	47,6	58,7	58,7	58,7	69,9	69,9	69,9	69,9	69,9
E3		1.19	1.19	2.32	2.32	2.32	2.75	2.75	2.75	2.75	2.75
Ulmensoes Flange SAE 3000 PSI	G4	M10 x 15	M10 x 15	M10 x 18			M12 x 20				
		3/8–16 UNC	3/8–16 UNC	7/16–14 UNC	04.0	01.0	1/2-13 UNC		007	00.7	00.7
nge	b4	23,8	23,8	31,8	31,8	31,8	36,5	36,7	36,7	36,7	36,7
PS PS		.94	.94	1.25	1.25	1.25	1.44	1.45	1.45	1.45	1.45
900 000	b5	50,8	50,8	66,6	66,6	66,6	79,3	79,4	79,4	79,4	79,4
ensc E 6		2.00	2.00	2.62	2.62	2.62	3.12	3.13	3.13	3.13	3.13
Dimensões Flange SAE 6000 PSI	G4	M10 x 15		M14 x 17			M16 x 20				
ō	-	3/8-16 UNC		1/2-13 UNC			5/8-11 UNC				

Observação: recom.*: recomendado | mín.*: mínimo

D'		Dimensão nominal SF										
Jimenso	ões (mm/pol.)	014	030	045	070	125	090	130	160	250	300	
L O	0	23,8	23,8	31,6	31,6	31,6	36,7	36,7	36,7	36,7	36,7	
b2	2	.94	.94	1.24	1.24	1.24	1.45	1.45	1.45	1.45	1.45	
	0	50,8	50,8	66,7	66,7	66,7	79,4	79,4	79,4	79,4	79,4	
⊢ b3	b3	2.00	2.00	2.63	2.63	2.63	3.13	3.13	3.13	3.13	3.13	
G2	2	M10 x 15		M14 x 17	M14 x 17			M16 x 20				
GS	3	3/8-16 UN	C x .59	1/2-13 UN	C x .79		5/8-11 UN	IC x .79				
b2	n	32	32	35	35	35	60	60	60	60	60	
€ 02	2	1.26	1.26	1.38	1.38	1.38	2.36	2.36	2.36	2.36	2.36	
ı B	n	56	56	85	85	85	115	115	115	115	115	
(opcional)	3	2.20	2.20	3.35	3.35	3.35	4.53	4.53	4.53	4.53	4.53	
GZ	2	M6 x 9		M10 x 15			M12 x 20					
G3	3	1/2-28 UN	F x .35	3/8-24 UN	F x .59		1/2-20 UN	1/2-20 UNF x .79				

Carcaça do filtro de alta pressão/ Filtro completo • Tipo SF

1) Tipo Filtro de alta pressão ② Dimensão de construção

Direção do fluxo	Dimensão nominal
60 I/min / 14 US GPM	014
110 I/min / 30 US GPM	030
160 I/min / 45 US GPM	045
240 I/min / 70 US GPM	070
330 I/min / 90 US GPM	090
475 I/min / 125 US GPM	125
500 I/min / 132 US GPM	130
660 I/min / 160 US GPM	160
990 I/min / 250 US GPM	250
1135 I/min / 300 US GPM	300

Aviso: o valor característico exato do fluxo depende do elemento filtrante selecionado, ver páginas $57\,/\,58$.

3 Material do filtro

Material	max. colapso ∆p*	Micragem dos filtros disponíveis	Código
Sem elemento	-	-	0
Fibra de vidro inorgânica	25 bar / 363 PSI		G
Fibra de vidro inorgânica	210 bar / 3045 PSI	3, 5, 10, 20	Н
Fibra inoxidável	210 bar / 3045 PSI		A
Malha em aço inoxidável	30 bar / 435 PSI	25, 50, ¹⁰⁰ , 200	s

Aviso: *estabilidade de colapso e ruptura conforme ISO 2941.

4 Micragem do filtro

3 μm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200
Aviso: outras micragens de filtro sob consulta.	

(5) Material de vedação

_	3	
	NBR (Buna-N®)	В
	FKM/FPM/FPM (Viton®)	V
	EPDM	E

Aviso: outros materiais vedantes sob consulta...

(6) Flange de conexão

Tipo T	Т
Tipo TH (opcional)	TH

(10) Thermostop

 mormootop	
Sem thermostop	sem
Com thermostop	Т

(1) Voltagem (apenas para Código P)

_	_	,	•	-	,	
	24 V DC					024
	110 V AC					110
	230 V AC	;				230

7 Tipo de conexão

Tipo de conexão	Tipo	Grupo	Código	Grupo	Código	Grupo	Código
	de rosca	014 030		045 070 125		090 130 160 250 300	
BSP	métrica	3/4	G12	1-1/4	G20	1-1/2	G24
BSP	métrica	1	G16	1-1/2	G24	-	-
NPT	UNC	3/4	N12	1-1/4	N20	1-1/2	N24
Rosca O-ring SAE	UNC	1-1/16-12	U12	1-5/8-12	U20	1-7/8-12	U24
Flange SAE 6000 PSI	métrica	3/4	C612M	1-1/4	C620M	1-1/2	C624M
Flange SAE 6000 PSI	UNC	3/4	C612U	1-1/4	C620U	1-1/2	C624U
Flange SAE 3000 PSI	métrica	3/4	C312M	1-1/4	C320M	1-1/2	C324M
Flange SAE 3000 PSI	UNC	3/4	C312U	1-1/4	C320U	1-1/2	C324U
Flange SAE 3000 PSI	métrica	1	C316M	-	-	2	C332M
Flange SAE 3000 PSI	UNC	1	C316U	-	-	2	C332U

Aviso: outras conexões sob consulta. Recomendam-se as séries a negrito.

(8) Válvulas

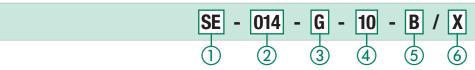
	Sem válvulas by-pass integrada (apenas SF-014/030)	10
	Válvula by-pass	0
	Válvula de retenção (apenas SF-014/030)	IB
	Válvulas by-pass	В
	Válvulas de retenção	R
	Válvulas reversível	N
	Válvula multifuncional	M
\sim	The district of the second control of the se	

(9) Indicador de contaminação

mulcador de comaminação	
Sem Indicador de contaminação	0
Visual, com reset automático	Α
Visual, com reset manual	V
Elétrico	E
Elétrico, Conector DEUTSCH	ED
Visual/ elétrico	P
Visual/ elétrico de dois níveis	D024

12) Versão copo do filtro

Com copo do mino simples	201
Com copo do filtro em duas peças	Т
Aviso: dimensões de construção SF-250 e SF-300 apenas	3
dianonívoje na vereĝe TI	


Versão com parafuso de drenagem de óleo disponível sob consulta.

SF-125 com copo do filtro em duas peças. SF-130 com copo do filtro em uma peça.

3 Número característico de série

Apenas para informação

Elementos filtrantes • Tipo SE

② Grupo Depende da carcaça do filtro

4 Micragem do filtro

3 µm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200

3) Material do filtro		Aviso: outras micragens de filtro sob	consulta.			
Material	Colapso max. Δp*	oso max. Δp* Micragens de filtro disponíveis				
Fibra de vidro inorgânica	25 bar / 363 PSI		G			
Fibra de vidro inorgânica	210 bar / 3045 PSI	3, 5, 10, 20	Н			
Fibra inoxidável	210 bar / 3045 PSI		Α			
Malha em aço inoxidável	30 bar / 435 PSI	25, 50, 100, 200	S			

Aviso: * Resistência a colapso/ ruptura, conforme ISO 2941.

(5) Material de vedação

NBR (Buna-N®)	В
FKM/FPM/FPM (Viton®)	٧
EPDM	Ε

Aviso: outros materiais vedantes sob consulta.

(6) Código característico de série

Apenas para informação

Filtros de alta pressão • Tipo SF-TM

Descrição

Os filtros de alta pressão SF-TM STAUFF foram projetados para a montagem de manifold em instalações hidráulicas com uma pressão de trabalho máxima de até 315 bar/ 4560 PSI. Em conjunto com os Elementos filtrantes SE STAUFF está garantida uma elevada eficiência na separação de partículas sólidas. A elevada capacidade de retenção de sujidade garante uma vida útil longa, prevenindo assim os custos de manutenção.

Dados técnicos

Tipo

• Projetado para montagem em manifold, com furos de montagem e portas de fluidos na parte superior do cabeçote.

Materiais

SF-TM-014 ... 125 aço forjado Cabeçote:

SF-TM-090 ... 300 fundição nodular Copo do filtro: Aço extrudado a frio • 0-rings: NBR (Buna-N®)

FKM/FPM/FPM (Viton®)

EPDM (monômero de etileno-propileno-dieno)

Anel de apoio: PTFE (politetrafluoroetileno)

Pressão de trabalho

Max. 315 bar / 4560 PSI

Pressão de ruptura

Min. 945 bar / 13705 PSI

Faixa de temperatura

■ -10 °C ... +100 °C / +14 °F ... +212 °F

Elementos filtrantes

■ Especificações, ver página 44

Compatibilidade com os fluidos

• Óleos minerais, outros fluidos sob consulta.

Opções e acessórios

Válvulas

Derivação do elemento filtrante contaminado ao atingir a pressão de abertura de 6 $^{+\,0.5}$ bar / 87 $^{+\,7.25}$ PSI Δp ■ Válvula by-pass :

Outras pressões de abertura sob consulta.

■ Válvula de retenção: Previne o esvaziamento da tubulação seguinte durante a substi-

tuição de um elemento.

· Válvula de fluxo reverso: Derivação do elemento filtrante na direção de fluxo

inversa

Válvulas

Pressão de abertura de 6 $^{+0,5}$ bar / 87 $^{+7.25}$ PSI multifuncionais:

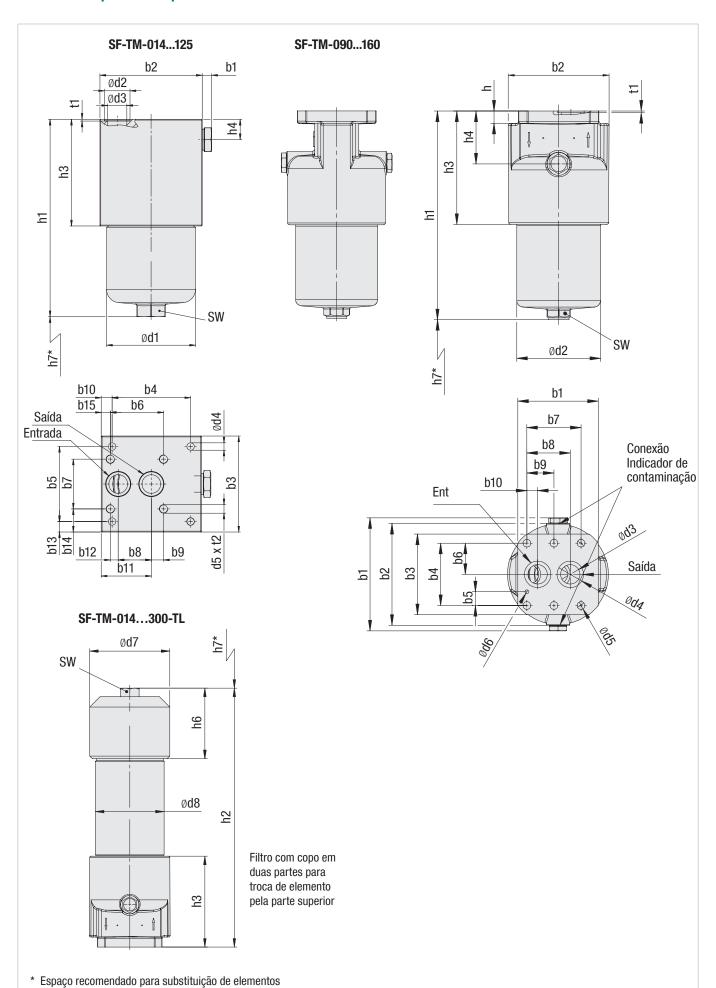
Válvula de fluxo reverso e de retenção com by-pass combinadas

numa única válvula.

Indicador de contaminação

■ Pressão padrão:

5 $_{\text{-0,5}}\,\text{bar}\,/\,72.5\,_{\text{-7.25}}\,\text{PSI}\,\Delta\text{p}$ Outras pressões de arranque sob consulta.

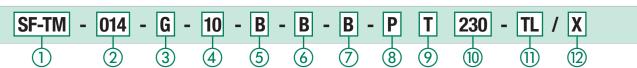

■ Indicadores de pressão diferencial

disponíveis: Visual

> Visual-Elétrico (24 V DC, 110 V AC, 230 V AC) Visual / elétrico de dois níveis (24 V DC)

Filtros de alta pressão • Tipo SF-TM

Filtros de alta pressão • Tipo SF-TM


Dimensões	(mm/	Dimensão n	ominal SF-TM							
ool.)		014	030	045	070	125	090	160	250	300
.4		6	6	6	6	6	175,6	175,6	175,6	175,6
01		.24	.24	.24	.24	.24	6.91	6.91	6.91	6.91
02		104	104	115	115	115	158	158	158	158
)2		4.09	4.09	4.53	4.53	4.53	6.22	6.22	6.22	6.22
- 0		80	80	110	110	110	125	125	125	125
03		3.35	3.35	4.33	4.33	4.33	4.92	4.92	4.92	4.92
. 4		89	89	90	90	90	96,8	96,8	96,8	96,8
04		3.50	3.50	3.54	3.54	3.54	3.81	3.81	3.81	3.81
-		31,8	31,8	86	86	86	21,4	21,4	21,4	21,4
5		1.25	1.25	3.39	3.39	3.39	.84	.84	.84	.84
				61	61	61	48,4	48,4	48,4	48,4
66		-	-	2.40	2.40	2.40	1.91	1.91	1.91	1.91
				57	57	57	84,1	84,1	84,1	84,1
b7		-	-	2.24	2.24	2.24	3.31	3.31	3.31	3.31
		31,6	31,6	38	38	38	67,4	67,4	67,4	67,4
80		1.24	1.24	1.50	1.50	1.50	2.65	2.65	2.65	2.65
_				14	14	14	42,05	42,05	42,05	42,05
9		-	-	.55	.55	.55	1.66	1.66	1.66	1.66
		7,5	7,5	12,5	12,5	12,5	16,7	16,7	16,7	16,7
10		.30	.30	.49	.49	.49	.66	.66	.66	.66
		55,9	55,9	57,5	57,5	57,5		.00		
b11		2.20	2.20	2.26	2.26	2.26	-	-	-	-
		0		9	9	9				
b12		-	-	.35	.35	.35	-	-	-	-
		24,1	24,1	12	12	12				
b13		.95	.95	.47	.47	.47	-	-	-	-
		.50	.35	26,5	26,5	26,5				
b14		-	-	1.04	1.04	1.04	-	-	-	-
				10,5	1.04	1.04				
b15		-	-	.41	.41	.41		-	-	-
		60.0	60.0	95,2		95,2	150	156	150	150
d1		68,2	68,2		95,2		156		156	156
		2.69	2.69	3.75	3.75	3.75	6.14	6.14	6.14	6.14
d2		25,3	25,3	28,6	28,6	28,6	130,2	130,2	130,2	130,2
		1.00	1.00	1.13	1.13	1.13	5.13	5.13	5.13	5.13
d3		17,5	17,5	21,4	21,4	21,4	30	30	30	30
		.69	.69	.84	.84	.84	1.18	1.18	1.18	1.18
d4		8,5	8,5	9	9	9	41	41	41	41
		.33	.33	.35	.35	.35	1.61	1.61	1.61	1.61
d5		_		7/16-14 UNC	7/16–14 UNC	7/16–14 UNC	12	12	12	12
uo				7710-14 0110	7710-14 0110	7710-14 0110	.47	.47	.47	.47
d6		_	_		_		6	6	6	6
uo							.24	.24	.24	.24
d7		84	84	115	115	115	155	155	155	155
u <i>1</i>		3.31	3.31	4.53	4.53	4.53	6.10	6.10	6.10	6.10
40		70	70	101,6	101,6	101,6	133	133	133	133
18		2.76	2.76	4.00	4.00	4.00	5.24	5.24	5.24	5.24
h-1		162	228	206	264	446	324	495		
h1		6.38	8.97	8.11	10.39	17.56	12.76	19.49		-
_		164	230	206	266	447	330,5	501,5	657,5	822,5
h2		6.46	9.06	8.11	10.47	17.60	13.01	19.74	25.89	32.38
		76	76	93	93	93	178	178	178	178
13		2.99	2.99	3.66	3.66	3.66	7.01	7.01	7.01	7.01
		25	25	25	25	25	82	82	82	82
14		.98	.98	.98	.98	.98	3.23	3.23	3.23	3.23
		.50	.30	.50	.30	.50	19,1	19,1	19,1	19,1
15		-	-	-	-	-				.75
		64	64	92.5	92 F	92 E	.75	.75	.75	
16		64	64	82,5	82,5	82,5	136	136	136	136
		2.52	2.52	3.25	3.25	3.25	5.35	5.35	5.35	5.35
	rec.*	100	170	140	200	380	190	360	-	-
Uma		3.94	6.69	5.51	7.87	14.96	7.48	14.17		
peça	min.*	85	85	120	120	120	150	150	-	-
		3.35	3.35	4.72	4.72	4.72	5.91	5.91		
Duas	peças	65	130	100	160	340	120	290	425	590
Duas	poguo	2.56	5.12	3.94	6.30	13.39	4.72	11.42	16.73	23.23
:1		2	2	2	2	2	3	3	3	3
		.08	.08	.08	.08	.08	.12	.12	.12	.12
+2				13	13	13		_		
t2		-	-	.51	.51	.51	-		-	-
214/		27	27	32	32	32	36	36	36	36
SW		1.06	1.06	1.26	1.26	1.26	1.42	1.42	1.42	1.42
		5,7	6,3	11	12,5	17	21,6	28,8	=	=
Peso	Jma peça	12.5	13.9	24.2	27.8	37.8	48.0	64.0	-	-
(kg/lbs)	Duas	6,6	7,3	13,1	14,6	21	26,5	33,8	43,2	54,6
	peças	14.7	16.2	29.1	32.4	46.7	58.9	75.1	96	121.3

Observação: recom.*: recomendado | mín.*: mínimo

Carcaça do filtro de alta pressão / Filtro completo • Tipo SF-TM

Tipo Filtros de alta pressão com conexões e fixação superior

② Dimensão de construção

Fluxo nominal	Dimensão nominal
60 I/min / 14 US GPM	014
110 I/min / 30 US GPM	030
160 I/min / 45 US GPM	045
240 I/min / 70 US GPM	070
330 I/min / 90 US GPM	090
475 I/min / 125 US GPM	125
660 I/min / 160 US GPM	160
990 I/min / 250 US GPM	250
1135 I/min / 300 US GPM	300

Aviso: o valor característico exato do fluxo depende do elemento filtrante selecionado, ver páginas 57 / 58.

③ Material do filtro

Material	Máx. Δp*colapso	Micragem do filtros disponíveis	código
Sem elemento filtrante	-	=	0
Fibra de vidro inorgânica	25 bar / 363 PSI		G
Fibra de vidro inorgânica	210 bar / 3045 PSI	3, 5, 10, 20	Н
Fibra inoxidável	210 bar / 3045 PSI		Α
Malha em aço inoxidável	30 bar / 435 PSI	25, 50, ¹⁰⁰ , 200	S

Aviso: *estabilidade de colapso e ruptura conforme ISO 2941.

4 Micragem do filtro 03 3 um $5\,\mu m$ 05 10 µm 10 20 µm 20 25 µm 25 50 µm 50 100 100 um 200 µm 200 Aviso: outras micragens de filtro sob consulta.

(5) Material de vedação

NBR (Buna-N®)	В
FKM/FPM/FPM (Viton®)	V
EPDM	E

Aviso: outros materiais vedantes sob consulta.

11) Versão copo do filtro

Com copo do filtro simples	sem
Com copo do filtro em duas peças	TL

Aviso: dimensões de construção SF-TM-250 e SF-TM-300 apenas disponíveis na versão TL.

(6) Tipo de conexão

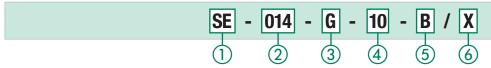
Tipo de	Grupo		Código	Grupo		Código	Grupo			Código		
conexão	014	030		045	070	125		090	160	250	300	
BSP	1/2 (Ø17	.5mm / Ø.69in)	R	1-1/4 (Ø2	1,4mm/	Ø.85in)	R	1-1/2 (Ø3	0mm /	Ø1.18ir	1)	R

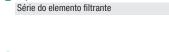
(8) Indicador de contaminação Sem Indicador de contaminação O Visual, com reset automático A Visual, com reset manual V Elétrico E Elétrico, Conector DEUTSCH ED Visual / elétrico P Visual / elétrico de dois níveis D024 (9) Thermostop

- Sem thermostop sem
 Com thermostop T

 (i) Voltagem (apenas para código P)
- 10) Voltagem (apenas para código P)

 24 V DC
 024


 110 V AC
 110


 230 V AC
 230

12) Número característico de série

Apenas para informação X

Elementos filtrantes - Tipo SE

② Grupo

(1) Tipo

Consoante a carcaça do filtro

4 Micragem do filtro 03 3 µm 5 µm 05 10 µm 10 20 µm 20 25 µm 25 50 µm 50 100 µm 100 200 µm

Aviso: outras micragens de filtro sob consulta.

3 Material do filtro

y Material do Illito			
Material	max. colapso Δp*	Micragens de filtro disponíveis	Código
Fibra de vidro inorgânica	25 bar / 363 PSI		G
Fibra de vidro inorgânica	210 bar / 3045 PSI	3, 5, 10, 20	Н
Fibra inoxidável	210 bar / 3045 PSI		Α
Malha em aço inoxidável	30 bar / 435 PSI	25, 50, 100, 200	S

Aviso: * Resistência ao colapso de acordo com a norma ISO 2941.

Material de vedação

NBR (Buna-N®)	В
FKM/FPM/FPM (Viton®)	٧
EPDM	E

Aviso: outros materiais vedantes sob consulta.

(6) Número característico de série

Apenas para informação X

Filtros de alta pressão • Tipo SFZ

Descrição

Os filtros de alta pressão SFZ STAUFF foram projetados para a montagem de placas intermediárias em manifold em instalações hidráulicas com uma Pressão de trabalho máxima de até 315 bar / 4560 PSI. Em conjunto com os Elementos filtrantes SE STAUFF está garantida uma elevada eficiência na separação de partículas sólidas. A elevada capacidade de retenção de sujidade garante uma vida útil longa, prevenindo assim os custos de manutenção.

Dados técnicos

Tipo

• Projetados para a montagem de placas intermediárias em manifold

Materiais

■ Cabeçote do filtro: Aço

Copo do filtro: Aço extrudado a frio
 O-rings: NBR (Buna-N®)

FKM/FPM/FPM (Viton®)

EPDM (Monômero de etileno-propileno-dieno)

■ Anel de apoio (copo): PTFE (politetrafluoroetileno)

Conexões

 Conforme ISO 4401-03-02-0-05 NG6 / DIN24340-A6 / Cetop R 35 H (Ref.: NFPA/ANSI D03)

Pressão de trabalho

Max. 315 bar / 4560 PSI

Pressão de ruptura

Min. 945 bar / 13705 PSI

Faixa de temperatura

 \blacksquare -10 °C ... +100 °C / +14 °F ... +212 °F

Elementos filtrantes

■ Especificações, ver página 44

Compatibilidade com os fluidos

Óleos minerais, outros fluidos sob consulta.

O-ring para furos de conexão

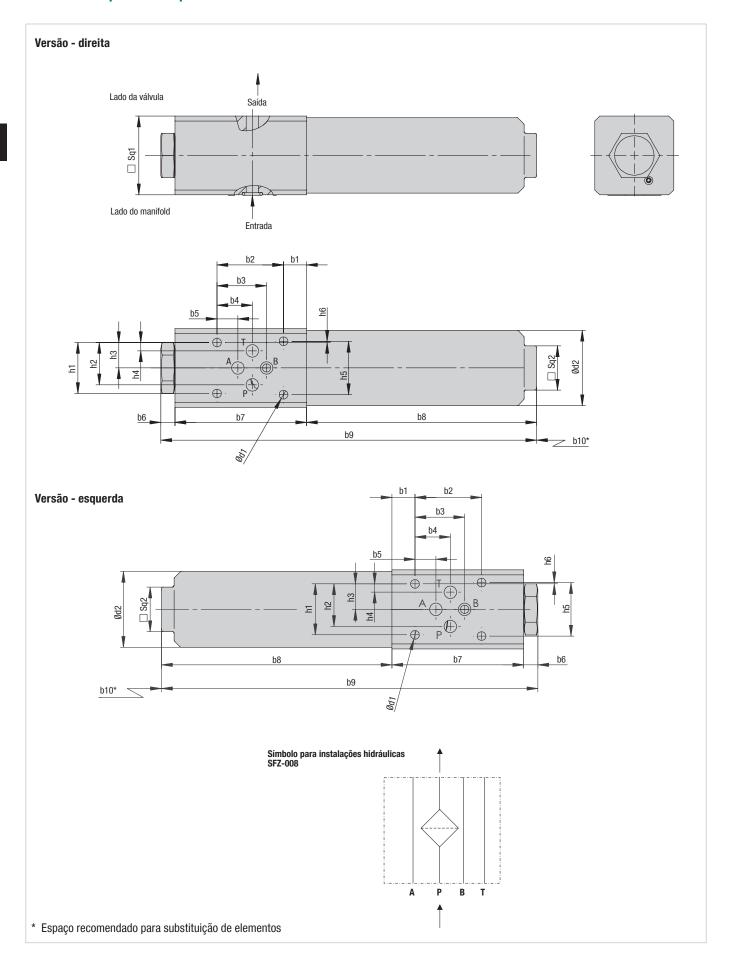
• 9x1,7 (4x inclusos no escopo de fornecimento)

Opções e acessórios

Indicador de contaminação

Pressão padrão: 5_{-0.5} bar / 72.5_{-7.25} PSI Δp
 Outras pressões de arranque sob consulta.

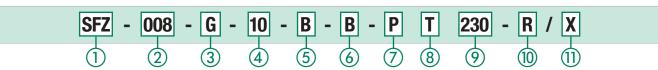
 Indicadores de pressões diferenciais


disponíveis: Visual

Elétrico

Visual-Elétrico (24 V DC, 110 V AC, 230 V AC) Visual / elétrico de dois níveis (24 V DC)

Filtros de alta pressão - Tipo SFZ



Filtros de alta pressão • Tipo SFZ

Dimensões (mm/pol.) Dimensão nominal SFZ SFZ-008 b1 14
$\begin{array}{c} b1 & \begin{array}{c} 14 \\ .55 \\ \\ b2 \\ \end{array} & \begin{array}{c} 40,5 \\ \hline 1.59 \\ \\ b3 \\ \end{array} & \begin{array}{c} 30,2 \\ \hline 1.19 \\ \\ \end{array} \\ \begin{array}{c} 1.19 \\ \hline .85 \\ \end{array} \\ \begin{array}{c} 85 \\ \\ .50 \\ \\ \end{array} \\ \begin{array}{c} 50 \\ \\ .50 \\ \end{array} \\ \begin{array}{c} 80 \\ \\ 3.15 \\ \\ \end{array} \\ \begin{array}{c} 80 \\ \\ 3.15 \\ \end{array} \\ \begin{array}{c} 140 \\ \\ \hline .551 \\ \end{array}$
$\begin{array}{c} b2 \\ \hline b3 \\ \hline b3 \\ \hline b4 \\ \hline b5 \\ \hline b5 \\ \hline b6 \\ \hline b7 \\ \hline $
$\begin{array}{c} b2 \\ \hline b2 \\ \hline 1.59 \\ \hline b3 \\ \hline 30.2 \\ \hline 1.19 \\ \hline b4 \\ \hline 21.5 \\ \hline .85 \\ \hline b5 \\ \hline 12.7 \\ \hline .50 \\ \hline b6 \\ \hline 9 \\ \hline .35 \\ \hline b7 \\ \hline \hline 80 \\ \hline 3.15 \\ \hline b8 \\ \hline \\ \hline \end{array}$
b3
$\begin{array}{c} b3 & \begin{array}{c} 30,2 \\ 1.19 \\ \\ b4 & \begin{array}{c} 21,5 \\ .85 \\ \end{array} \\ b5 & \begin{array}{c} 12,7 \\ .50 \\ \end{array} \\ b6 & \begin{array}{c} 9 \\ .35 \\ \end{array} \\ b7 & \begin{array}{c} 80 \\ 3.15 \\ \end{array} \\ b8 & \begin{array}{c} 140 \\ 5.51 \\ \end{array} \end{array}$
b4
$\begin{array}{c} \mathbf{b4} & \begin{array}{c} 21.5 \\ .85 \\ \\ 12.7 \\ .50 \\ \\ \mathbf{b6} \\ \end{array}$
b5
$\begin{array}{c} 50 \\ $
b6 9 .35 b7 80 3.15 b8 140 5.51
$\begin{array}{c} 35 \\ $
b7 80 3.15 b8 140 5.51
b8
b8
5.51
J.J.
b9 229
3.02
b10 50 1.07
1.97
d1 5,3 .21
.21 46
d2 40 1.81
1.01
h1 31 1.22
0.5
h2 25,8 1.02
15.5
h3
E4
h4 5,1 .20
20 5
1.28
0,75
.03
Sq1 48 1.80
541 1.89
Sq2 27
1.06

Carcaça do filtro de alta pressão / Filtro completo • Tipo SFZ

1) Tipo

Filtros de alta pressão para montagem de placas intermediárias

2 Dimensão de construção

Fluxo nominal Dimensão nominal 30 I/min / 8 US GPM Aviso: o valor característico exato do fluxo depende do elemento filtrante selecionado, ver páginas 57 / 58.

3 Material do filtro

Note que o elemento filtrante não é protegido por um by-pass interno. Assegure que a instalação hidráulica seja projetada com proteção suficiente do elemento.

Material	Máx. Δp*colapso	Micragem do filtros disponíveis	código
Sem elemento filtrante	-	-	0
Fibra de vidro inorgânica	25 bar / 363 PSI		G
Fibra de vidro inorgânica	210 bar / 3045 PSI	3, 5, 10, 20	Н
Fibra inoxidável	210 bar / 3045 PSI		Α
Malha em aço inoxidável	30 bar / 435 PSI	25, 50, ¹⁰⁰ , 200	s

Aviso: *estabilidade de colapso e ruptura conforme ISO 2941.

4 Micragem do filtro

3 µm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200

Aviso: outras micragens de filtro sob consulta.

⑤ Material de vedação

NBR (Buna-N®)	В
FKM/FPM/FPM (Viton®)	V
EPDM	E

Aviso: outras micragens de filtro sob consulta.

(6) Tipo de conexão

Tipo de conexão	Grupo 008	Código
NBSP	NG6* (Ref.: D03)	В

* ISO 4401-03-02-0-05 / DIN 24340-A6 / Cetop R 35 H

(7) Indicador de contaminação

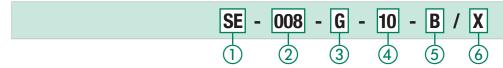
Sem Indicador de contaminação	0
Visual, com reset automático	Α
Visual, com reset manual	V
Elétrico	Е
Elétrico, Conector DEUTSCH	ED
Visual / elétrico	P
Visual / elétrico de dois níveis	D024

® Thermostop

Sem thermostop	sem
Com thermostop	T

(9) Voltagem (apenas para código P)

24 V DC	` .	•	024
110 V AC			110
230 V AC			230


10 Versão

Versão direita	R
Versão esquerda	L

11) Número característico de série

Apenas para informação

Elementos filtrantes • Tipo SE

1) Tipo

Série do elemento filtrante

2 Dimensão de construção

Consoante a carcaça do filtro

3 Material do filtro

Note que o elemento filtrante não é protegido por um by-pass interno. Assegure que a instalação hidráulica seja projetada com proteção suficiente do elemento.

* Aviso: *estabilidade de colapso e ruptura conforme ISO 2941.

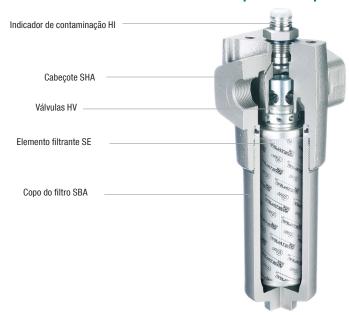
4 Micragem do filtro

3 µm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200

Aviso: outras micragens de filtro sob consulta.

(5) Material de vedação

NBR (Buna-N®)	В
FKM/FPM/FPM (Viton®)	٧
EPDM	Ε


Aviso: outros materiais vedantes sob consulta...

6 Número característico de série

Apenas para informação

Filtros de média pressão - Tipo SFA

Descrição

STAUFF Série SFA Filtros de média pressão são projetados para aplicações em linha hidráulica com uma pressão de trabalho máxima de 160 bar/ 2320 PSI. Utilizados em conjunto com STAUFF SE Série Elementos filtrantes, é garantida uma alta eficiência de remoção de contaminação. A capacidade de retenção de sujeira dos elementos garante vida útil longa e, como resultado, redução dos custos de manutenção.

Dados técnicos

■ Projetado para a montagem em linha com furos na parte superior do cabeçote

Materiais

Alumínio Fundido Cabecote: Copo do filtro: Alumínio • 0-rings: NBR (Buna-N®)

FKM/FPM/FPM (Viton®)

EPDM (Monômero de etileno-propileno-dieno)

PTFE (politetrafluoroetileno) Anel de apoio:

Conexões

- BSP
- NPT
- Rosca 0-ring SAE
- Flange SAE 3000 PSI (Código 61)

Pressão de trabalho

SFA-014/030: Max. 160 bar / 2320 PSI

Max. 190 bar / 2755 PSI (conforme ANSI T2.6.1. R2-2001)

■ SFA-045/070: Max. 150 bar / 2175 PSI

Max. 171 bar / 2480 PSI (conforme ANSI T2.6.1. R2-2001)

Pressão de ruptura

Min. 480 bar / 6960 PSI

Faixa de temperatura

■ -10 °C ... +100 °C / +14 °F ... +212 °F

Elementos filtrantes

■ Especificações ver página 52

Compatibilidade com os fluidos

• Óleos minerais, outros fluidos sob consulta

Opções e acessórios

Válvulas

Derivação do elemento filtrante contaminado ao atingir a pressão de abertura de 6 $^{+~0.5}$ bar / 87 $^{+~7.25}$ PSI Δp Válvula by-pass :

Outras pressões de abertura sob consulta.

• Válvula de retenção: Previne o esvaziamento da tubulação seguinte durante a substitui-

ção de um elemento

Válvula de fluxo reverso: Derivação do elemento filtrante na direção de fluxo inversa

 \blacksquare Válvula multifuncional: Pressão de abertura de 6 $^{+0,5}$ bar / 87 $^{+7.25}$ PSI

Válvula de fluxo reverso e de retenção com by-pass combinadas

numa

única válvula.

Indicador de contaminação

Pressão padrão:

5 $_{-0.5}$ bar / 72.5 $_{-7.25}$ PSI Δp Outras pressões de arranque sob consulta

■ Indicadores de

 pressão diferencial disponíveis: Visual

Visual-Elétrico (24 V DC, 110 V AC, 230 V AC) Visual / elétrico de dois níveis (24 V DC)

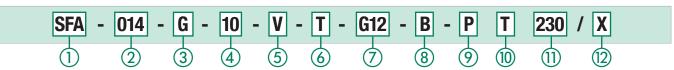
Filtros de média pressão - Tipo SFA

SFA-014...070 b1 Ød2 b5 H h2 Hex Conexão de flange Conexão de rosca Ød1 h5*Entrada G2: para rosca BSP e flanges métricas G3: para rosca NPT e SAE e para flanges UNC b3 Saída

^{*} Espaço recomendado para substituição de elementos

Filtros de média pressão • Tipo SFA

2 0	Dimensão nominal SFA	Dimensão nominal SFA					
Rosca Conexão G	014	030	045	070			
BSP	3/4	3/4	1-1/4	1-1/4			
NPT	3/4	3/4	1-1/4	1-1/4			
Rosca O-ring SAE	1-1/6-12	1-1/6-12	1-5/8–12	1-5/8–12			
Flange SAE 3000 PSI	3/4	3/4	1-1/4	1-1/4			
Doos (kg/lbs)	2,1	2,54	4,6	5,3			
Peso (kg/lbs)	4.7	5.6	10.2	11.8			


Dimo	20000 (mm/nol)	Dimensão nominal SFA			
Dillie	nsões (mm/pol.)	014	030	045	070
		92	92	128	128
		3.62	3.62	5.04	5.04
d1		72	72	100	100
uı		2.83	2.83	3.93	3.93
d2		86	86	117	117
uz		3.39	3.39	4.61	4.61
h1		187,5	255	241,5	301
1111		7.38	10.04	9.51	11.85
h2		78	145,5	105	164,5
112		3.07	5.73	4.13	6.46
h3		40	40	49,5	49,5
113		1.58	1.58	1.95	1.95
h4		12,5	12,5	12,5	12,5
114		.49	.49	.49	.49
	rec.*	100	170	140	200
h5		3.94	6.69	5.51	7.87
IIO	min.*	85	85	120	120
	IIIII."	3.35	3.35	4.72	4.72
Hex		27	27	32	32
пех		1.05	1.05	1.25	1.25
a)	b4	22,3	22,3	30,2	30,2
lug(U4	.88	.88	1.19	1.19
E G	b5	47,6	47,6	58,7	58,7
ões 300	ມວ	1.87	1.87	2.32	2.32
ens		M10 x 15 or	M10 x 15 or	M10 x 18 or	M10 x 18 or
Dimensões Flange SAE 3000 PSI	G4	3/8–16 UNC	3/8-16 UNC	7/16–14 UNC	7/16–14 UNC

Observação: recom.*: recomendado | mín.*: mínimo

Dimo	noõoo (mm/nol)	Dimensão nominal SFA				
Dillie	nsões (mm/pol.)	014	030	045	070	
	b2	23,8	23,8	31,6	31,6	
	UZ	.94	.94	1.24	1.24	
-	b3	50,8	50,8	66,7	66,7	
-		2.00	2.00	2.63	2.63	
	G2	M10 x 15	M10 x 15	M14 x 17	M14 x 17	
	G3	3/8-16 UNC x .59	3/8-16 UNC x .59	1/2-13 UNC x .59	1/2-13 UNC x .59	

Carcaça do filtro de média pressão / Filtro completo • Tipo SFA

1) Tipo Filtro de média pressão

② Dimensão de construção

Fluxo nominal	Dimensão nominal
60 I/min / 14 US GPM	014
110 I/min / 30 US GPM	030
160 I/min / 45 US GPM	045
240 I/min / 70 US GPM	070

Aviso: o valor característico exato do fluxo depende do elemento filtrante selecionado, ver páginas 57 / 58.

(3) Material do filtro

Material	max. colapso Δp*	Micragem do filtros disponíveis	Código
Sem elemento filtrante	-	-	0
Fibra de vidro inorgânica	25 bar / 363 PSI		G
Fibra de vidro inorgânica	210 bar / 3045 PSI	3, 5, 10, 20	н
Fibra inoxidável	210 bar / 3045 PSI		Α
Malha em aço inoxidável	30 bar / 435 PSI	25,50,100 200	s

Aviso: *estabilidade de colapso e ruptura conforme ISO 2941.

(4) Micragem do filtro

ソ	Micragetti uu illuu	
	3 μm	03
	5 μm	05
	10 μm	10
	20 μm	20
	25 μm	25
	50 μm	50
	100 μm	100
	200 μm	200

Aviso: outras micragens de filtro sob consulta

(5) Material de vedação

\sim	3	
	NBR (Buna-N®)	В
	FKM/FPM/FPM (Viton®)	V
	EPDM	E

Aviso: outros materiais vedantes sob consulta.

(6) Flange de conexão Tipo T

7 Tipo de conexão

Tipo de conexão	Tipo	Grupo		Código	Grupo		Código
	de rosca	014	030		045	070	
BSP	métrica	3/4		G12	1-1/4		G20
BSP	métrica	1		G16	1-1/2		G24
NPT	UNC	3/4		N12	1-1/4		N20
Rosca O-ring SAE	UNC	1-1/16-12		U12	1-5/8-12		U20
Flange SAE 3000 PSI	métrica	3/4		C312M	1-1/4		C320M
Flange SAE 3000 PSI	UNC	3/4		C312U	1-1/4		C320U
Flange SAE 3000 PSI	métrica	1		C316M	-		-
Flange SAE 3000 PSI	UNC	1		C316U	-		-

Aviso: outras conexões a pedido. Recomendam-se as séries a negrito.

(8) Válvulas

	Sem Válvulas	0
	Válvula by-pass	В
	Válvula de retenção	R
	Válvula de fluxo reverso	N
	Válvula multifuncional	M
)	Indicador de contaminação	

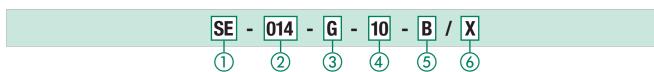
9

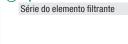
ソ	iliulcauoi ue colitalililação	
	Sem Indicador de contaminação	0
	Visual, com reset automático	Α
	Visual, com reset manual	V
	Elétrico	Е
	Elétrico, Conector DEUTSCH	ED
	Visual-Elétrico	P
	Visual / elétrico de dois níveis	D024

Sem thermostop	sen
Com thermostop	1

(11) Voltagem (apenas para Código P)

(10) Thermostop


24 V DC	024
110 V AC	110
230 V AC	230


N12	1-1/4	N20
U12	1-5/8-12	U20
C312M	1-1/4	C320M
C312U	1-1/4	C320U
C316M	-	-
C316U	-	-

12) Número característico de série

Apenas para informação

Elementos filtrantes • Tipo SE

② Dimensão de construção

Consoante a carcaça do filtro

4 Micragem do filtro 3 µm 03 5 µm 05 10 μm 10 20 µm 20 25 µm 25 50 µm 50 100 100 µm 200

Aviso: outras micragens de filtro sob consulta.

(3) Material do filtro

/			
Material	max. Δp*colapso	Micragem do filtros disponíveis	Código
Fibra de vidro inorgânica	25 bar / 363 PSI		G
Fibra de vidro inorgânica	210 bar / 3045 PSI	3, 5, 10, 20	Н
Malha em aço inoxidável	210 bar / 3045 PSI		Α
Malha em aço inoxidável	30 bar / 435 PSI	25, 50, 100, 200	S
Aviso: *estabilidade de colapso e ruptura conforme ISO 2941			

(5) Material de vedação

\circ	3	
	NBR (Buna-N®)	В
	FKM/FPM (Viton®)	٧
	EPDM	Ε

Aviso: outros materiais vedantes sob consulta.

6 Número característico de série

Apenas para informação

Válvulas

Descrição (não disponível para SFZ)

As válvulas opcionais são montadas como um inserto no cabeçote do filtro e incorporam a um alojamento na qual o elemento é vedado. A válvula é selecionada para se adequar à aplicação do filtro.

HVN

HVM

HVO Inserto padrão sem bypass sem nenhuma função de válvula
A classificação de colapso do elemento deve ser maior do que a pressão do

sistema

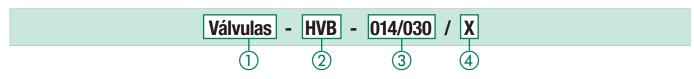
HVB A Válvula by-pass permite um desvio do óleo do elemento filtrante se a pressão diferencial de 6^{+0.5} bar / 87^{+7.25} PSI for excedida. A pressão de abertura deve ser superior ao valor limite da pressão diferencial de um indicador de contaminação opcional. A estabilidade da pressão de colapso

do elemento filtrante de 30 bar / 435 PSI é suficiente. Outras pressões de abertura sob consulta

HVR Válvula de fluxo reverso utilizar no fluxo de óleo reverso, para que o fluido não passe pelo elemento filtrante na direção inversa.

A estabilidade da pressão de colapso do elemento filtrante deve ser

superior à pressão do sistema.


Válvula retenção esta previne o esvaziamento do sistema durante a substituição do elemento filtrante. A estabilidade da pressão de colapso do elemento filtrante deve ser superior à pressão do sistema.

Válvula multifuncional

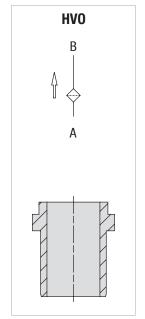
Combinação entre válvula by-pass , reversível e de retenção pressão de abertura $6^{+0,5}$ bar / $87^{+7.25}$ PSI Δp

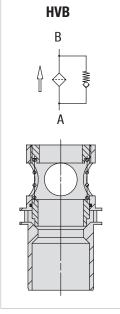
A pressão de abertura deve ser superior ao valor limite da pressão diferencial de um indicador de contaminação opcional. A estabilidade da pressão de colapso do elemento filtrante de 30 bar / 435 PSI Δp é suficiente. Outras pressões de abertura sob consulta.

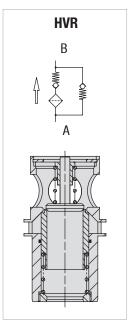
Código para pedido

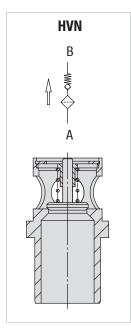
1 Tipo Válvulas para Filtros de pressão Válvulas

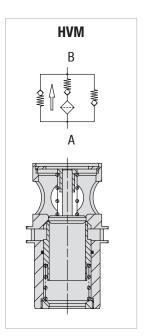
2 Versão da válvula


•	Voi ouo da vaivala	
	Inserto padrão sem bypass	HVO
	Válvula by-pass	HVB
	Válvula de fluxo reverso	HVR
	Válvula retenção	HVN
	Válvula multifuncional	HVM

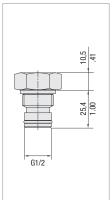

3 Grupo de filtro


Para dimensão nominal 014/030	014/030
Para dimensão nominal 045/070/125	045/070
Para dimensão nominal 090/160/250/300	090/160


4 Número característico de série


Apenas para informação

Curvas características do fluxo, ver página 56.


Indicador de contaminação

Descrição

Os Filtros de Pressão STAUFF possuem uma ampla linha de indicadores de contaminação disponíveis. Se nenhum indicador for especificado, a porta é selada por um pluge (HI-O). os indicadores de obstrução são acionados pela pressão diferencial (Δ p) em todo o elemento. O projeto especial do pistão minimiza os efeitos dos picos de pressão no sistema. Um bloqueio térmico opcional (thermo-stop) está disponível para evitar falsa indicação sob condições de partida a frio. A temperatura do fluido tem que ser no mínimo +20 °C / +68 °F para que o indicador funcione.

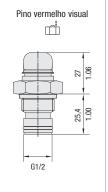
Plugue Tipo HI-O Indicador visual de contaminação Tipo HI-A e HI-V-V

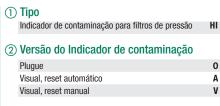
Dados técnicos

Materiais

Corpo: Aço inoxidável

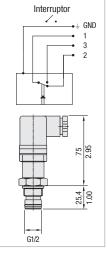
O Indicador visual de contaminação está disponível nas seguintes configurações:


· Reset manual: O Indicador continua exibindo o sinal obstruído mesmo que Δp tenha diminuído. Pressionar a tampa de plástico para baixo irá reiniciar o indicador.

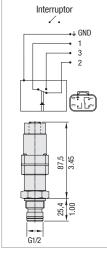

■ Reset automático: O sinal obstruído desaparecerá quando o Δp cair abaixo da configuração do indicador.

Código para pedido

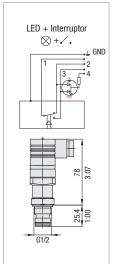
4 Ajuste da pressão diferencial (apenas HI-A e HI-V)


1,72 bar / 25 PSI	B1.7
2,0 bar / 29 PSI	B2.0
2,5 bar / 36.3 PSI	B2.5
3,0 bar / 43.5 PSI	B3.0
5,0 bar / 72.5 PSI (opção padrão)	B5.0
7,0 bar / 101.5 PSI	B7.0

Aviso: recomenda-se o tipo em negrito


(5) Número característico de série Apenas para informação

Dimensões



Continua na página 55.

Dimensional dos desenhos: Todas as dimensões em mm / pol.

Indicador de contaminação

Dados técnicos

Materiais

■ Corpo: Aço inoxidável

Elétrico

- Conector conforme DIN-EN 175301-803 A (DIN 43650-A)
- União roscada de cabo PG11
- Tipo de proteção (DIN 40050): IP65 ou IP67
- Contato de comutação: contato NA ou NF
- Potência de comutação, ver tabela em baixo
- Conector Deutsch

Aviso: a ligação elétrica é de responsabilidade do utilizador / cliente.

Capacidade nominal

Voltagem	Carga resistiva	Carga indutiva
V	Α	Α
110 V AC	5A	3A
230 V AC	3A	2A
24 V DC	4A	3A
	Carga max.	
24 V AC ± 10%	1A	

Picos de alta voltagem ocorrem quando as cargas indutivas são desligadas. Os circuitos de proteção devem ser empregados para reduzir queima dos contatores.

Código para pedido

Indicador de contaminação visual / elétrico de dois níveis

Descrição

O indicador diferencial de pressão HI-D024 é um pressostato controlado por microprocessador com duas saídas de alarme para pré-alarme e desligamento. É utilizado para monitorar a capacidade dos filtros de óleo em sistemas de circulação de óleo. Para este fim, um pressostato controlado por microprocessador observa a pressão dinâmica em frente ao elemento filtrante ou a pressão diferencial no elemento filtrante. A pressão aumenta em função do entupimento cumulativo do filtro. Para evitar falsos alarmes devido à alta viscosidade durante a partida, o dispositivo é equipado com uma função de controle de temperatura e retardo de tempo.

Dados técnicos

Conexões

■ G1/2

Pressão de trabalho

Max. 420 bar / 6000 PSI

Faixa de temperatura

- -20 °C ... +80 °C / -4 °F ... +176 °F
- Operacional > 20 °C / 68 °F

Materiais

Corpo: LatãoMaterial de vedação: NBR (Buna-N®)

Grau de proteção

■ IP 67

Tensão de operação

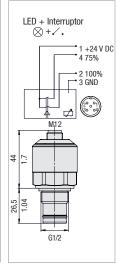
■ Max. 0,2 A, 24 V DC

Voltagem

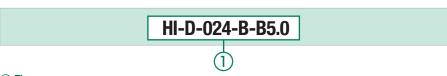
24 V DC

Saída de alarme (elétrico)

■ 3,8 + 10% bar / 55.1 +/- 10% PSI Δp = 75% (Pin 4)


■ 5 + 10% bar / 72.5 + 10% PSI $\Delta p = 100\%$ (Pin 2)

Saída de alarme (visual)


Faixa	Cor	
(%FS)	T>T* (Thermo-stop)	
0-50	Verde	
50-75	Amarelo	
75-100	Laranja Vermelho	
100		
	T <t* (thermo-stop)<="" td=""></t*>	
0-100	Azul	

T= Temperatura T*= 20 °C / 68 °F

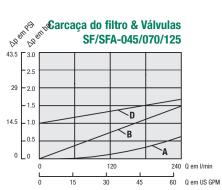
Código para pedido

1) Tipo

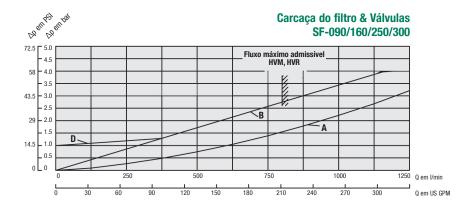
Indicador de contaminação para Filtros de pressão

HI-D-024-B-B5.0

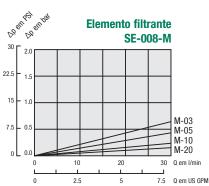
Dimensional dos desenhos: Todas as dimensões em mm / pol.

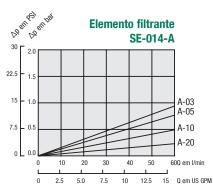


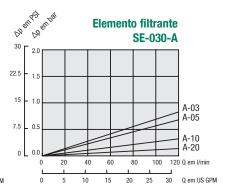
Filtros de alta e média pressão • Tipo SF / SF-TM / SFZ / SFA

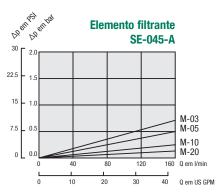

As seguintes curvas características são válidas para óleos minerais com uma densidade de 0,85 kg/dm³ e com uma viscosidade cinemática de 30 mm²/s (30 cSt). As curvas foram determinadas conforme ISO 3968.

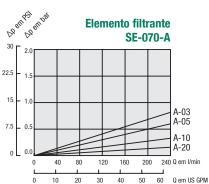
Os valores multipass correspondem à ISO 16889. A pressão diferencial do corpo altera-se proporcionalmente à densidade. Contate a STAUFF para mais informações.

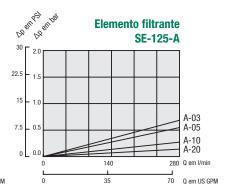

Configuração da válvula	Direção do fluxo	Curva
Carcaça do filtro com HVO/IO ou HVB/IB	Entrada →	Α
HVM, HVR, HVN	Entrada →	В
HVM,HVR	Saída →	D
Modo reverso	Entrada	U

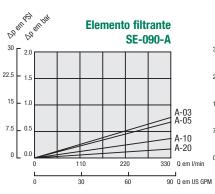


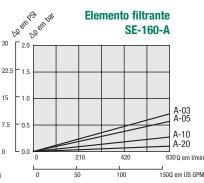


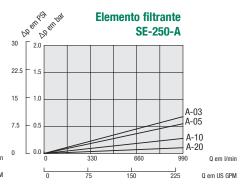

Filtros de alta e média pressão - Tipo SF / SF-TM / SFZ / SFA

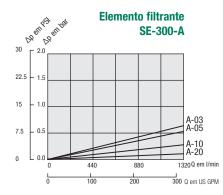

As seguintes curvas características são válidas para óleos minerais com uma densidade de 0,85 kg/dm3 e com uma viscosidade cinemática de 30 mm2/s (30 cSt). As curvas foram determinadas conforme ISO 3968. Os valores multipass correspondem à ISO 16889. A pressão diferencial do corpo altera-se proporcionalmente à densidade. Contate a STAUFF para mais informações.

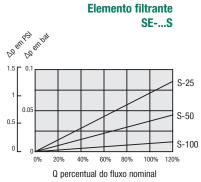


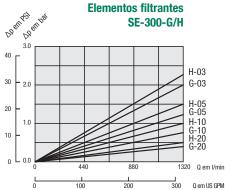












Filtros de alta e média pressão • Tipo SF / SF-TM / SFZ / SFA

As seguintes curvas características são válidas para óleos minerais com uma densidade de 0,85 kg/dm³ e com uma viscosidade cinemática de 30 mm²/s (30 cSt). As curvas foram determinadas conforme ISO 3968. Os valores multipass correspondem à ISO 16889. A pressão diferencial do corpo altera-se proporcionalmente à densidade. Contate a STAUFF para mais informações.

DREMPS Delle Dognasi **Elementos filtrantes Elementos filtrantes** DD ell par Doembar Demba **Elementos filtrantes** SE-030-G/H SE-008-G/H SE-014-G/H G-03 H-03 G-03 H-05 H-03 G-03 H-03 H-05 G-05 40 40 г G-05 30 30 30 H-10 20 G-10 H-10 G-10 20 20 1.0 1.0 1.0 10 H-20 H-20 10 G-20 10 G-20 0 L 0.0 0 0.0 30 Q em I/min Q em I/min 100 120 Q em I/min 7.5 Q em US GPM 2.5 10 12.5 15 Q em US GPM Q em US GPM Dempsi Demps Demps **Elementos filtrantes Elementos filtrantes Elementos filtrantes** Delupa Do esti bai DO BITT DE SE-045-G/H SE-070-G/H SE-125-G/H H-03 G-03 H-03 H-03 G-03 40 H-05 H-05 G-03 30 30 G-05 G-05 H-10 20 H-10 20 20 G-10 G-10 H-20 G-20 1.0 1.0 10 10 10 G-20 0 160 Q em I/min 120 160 240 0 em I/min 280 Q em I/min Q em US GPM 20 50 Q em US GPM 35 Q em US GPM Do Bulber Delibel Doenps **Elementos filtrantes Elementos filtrantes** Dellipat **Elementos filtrantes** DO BIT DAY DO BITT DEA SE-090-G/H SE-160-G/H SE-250-G/H H-03 40 40 40 G-03 H-03 H-03 H-05 30 30 G-03 2.0 2.0 G-03 G-05 H-10 G-10 1.0 1.0 G-20/H-20 10 0 L Q em I/min 210 420 630 90 Q em US GPM 50 100 150

Filtros de média pressão - Tipo SMPF

Descrição

Os filtros de média pressão SMPF STAUFF foram projetados para a montagem em linha em instalações hidráulicas com uma Pressão de trabalho máxima de 110 bar / 1600 PSI. Em conjunto com os Elementos filtrantes STAUFF está garantida uma elevada eficiência na separação de partículas sólidas.

Dados técnicos

Tipo

■ Montagem em linha

Materiais

Cabeçote: Alumínio
 Copo do filtro: Alumínio
 Vedantes: NBR (Buna-N®)

Conexões

■ BSP

Rosca 0-ring SAE

Fluxo

■ Até 90 I/min / 25 US GPM

Pressão de trabalho

■ Max. 110 bar / 1600 PSI

Pressão de ruptura

■ 300 bar / 4350 PSI

Faixa de temperatura

■ -25 °C ... +110 °C / -13 °F ... +230 °F

Elementos filtrantes

■ Especificações ver página 62

Compatibilidade com os fluidos

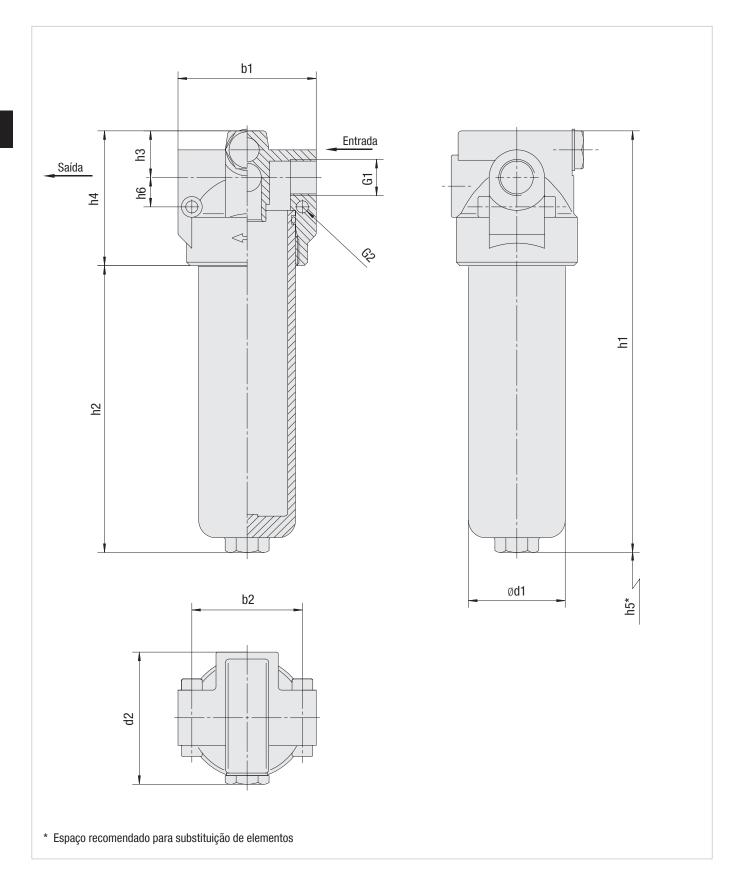
• Óleos minerais, outros fluidos sob consulta

Opções e acessórios

Válvulas

 Válvula by-pass : Derivação do elemento filtrante contaminado ao atingir a pressão de abertura de 6 / 87 PSI

Indicador de contaminação

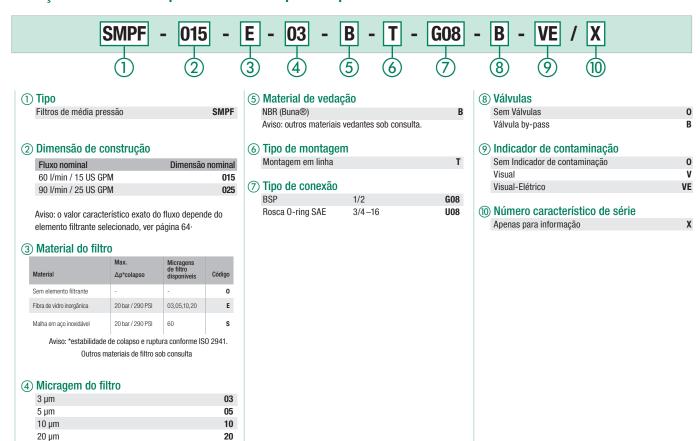

■ Pressão padrão: 5 bar / 72.5 PSI ±10%

 Indicadores de pressões diferenciais disponíveis:

íveis: Visual Visual-Elétrico

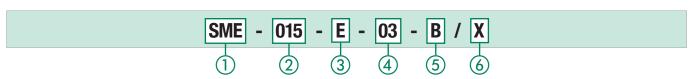
Filtros de média pressão • Tipo SMPF

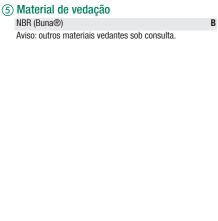
Filtros de média pressão • Tipo SMPF


Rosca Conexão G1	Dimensão nominal SMPF		
nosca collexao d l	015	025	
Fluxo nominal (I/min / US GPM)	60	90	
Fluxo Hollillai (I/IIIII / OS GFW)	15	25	
BSP	1/2	1/2	
Rosca O-ring SAE	3/4–16	3/4–16	
Book (kg/lb)	0,95	1,25	
Peso (kg/lb)	2.09	2.76	

Dimanaãos (mm/nal.)	Dimensão nominal SMPF	
Dimensões (mm/pol.)	015	025
b1	80	80
DI	3.15	3.15
b2	64	64
UZ	2.52	2.52
d1	56	56
uı	2.20	2.20
d2	76,5	76,5
uz	3.01	3.01
h1	157	244
	6.18	9.61
h2	79	166
112	3.11	6.54
h3	27	27
113	1.06	1.06
h4	78	78
114	3.07	3.07
h5	60	60
113	2.36	2.36
h6	17	17
110	.67	.67
G2	7	7
uz	.28	.28

Carcaça do filtro de média pressão / Filtro completo • Tipo SMPF


60

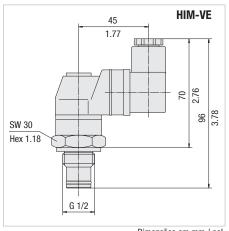

Elementos filtrantes - Tipo SME

Aviso: outras micragens de filtro sob consulta

60 µm

6 Número característico de série Apenas para informação X

Indicador visual de contaminação

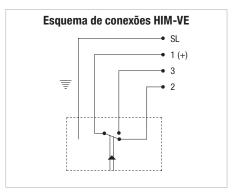

O indicador de contaminação STAUFF HIM-V para os filtros de média pressão SMPF trabalha com base na pressão diferencial entre o lado contaminado e o lado limpo do elemento filtrante. A pressão padrão de 5 bar / 72 PSI permite a substituição do elemento antes de atingir a pressão de abertura da válvula by-pass de 6 bar / 87 PSI.

HIM-V ø30 1.18 8 8 SW 30 74 Hex 1.18 G 1/2

Filtros de média pressão - Tipo SMPF

Indicador de contaminação Visual-Elétrico

O indicador de contaminação HIM-VE STAUFF destina-se ao monitoramento elétrico do grau de contaminação do elemento filtrante e trabalha com base na pressão diferencial entre o lado contaminado e o lado limpo do elemento. A pressão padrão de 5 bar / 72 PSI permite a substituição do elemento antes de atingir a pressão de abertura da válvula by-pass de 6 bar / 87


Dimensões em mm / pol.

HIM-VE Capacidade Nominal

Voltagem V	Carga resistiva A	Carga Indutiva A	
125 V AC	5	5	
250 V AC	5	5	
15 V AC	10	10	
30 V DC	5	5	
50 V DC	1	1	
125 V DC	0.50	0.06	

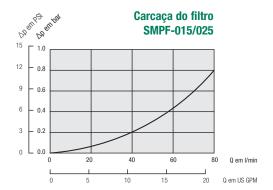
HIM

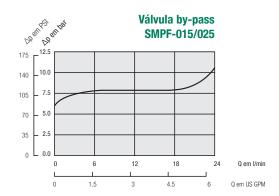
Aviso: a ligação elétrica é de responsabilidade do utilizador / cliente.

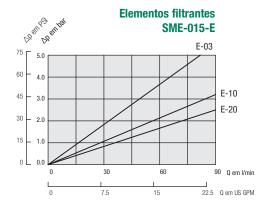
Código para pedido

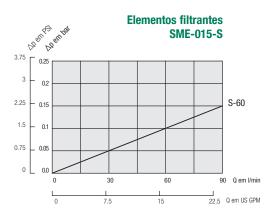
2 Tipo Indicato Visual Visual-Elétrico ۷E

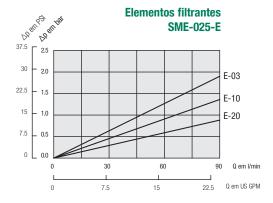
Indicador de contaminação SMPF Series

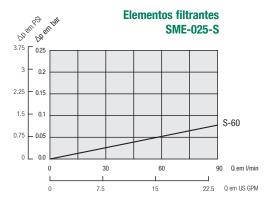

3 Material de vedação NBR (Buna®) (4) Pressão diferencial 5,0 bar / 72.5 PSI B5.0


(5) Número característico de série Apenas para informação




Filtros de média pressão - Tipo SMPF Curvas características da vazão


As seguintes curvas características são válidas para óleos minerais com uma densidade de 0,85 kg/dm³ e com uma viscosidade cinemática de 30 mm²/s (30 cSt). As curvas foram determinadas conforme ISO 3968. Os valores multipass correspondem à ISO 16889. Contate a STAUFF para mais informações.



Checklist para a seleção de carcaças de filtro

Por favor, use o seguinte checklist como diretriz para uma consulta e seleção das carcaças dos filtros. Copie/digitalize e imprima esta página, preencha o máximo de informações possíveis e envie a página juntamente com o seu pedido para o representante STAUFF mais próximo. Se possível, indique no seu pedido uma quantidade de produção e se é

um pedido único ou recorrente. Não hesite em contatar-nos.

	Informações sobre o fluido utilizado								
Tipo de fluido		Marca		Abreviação ISO					
Viscosidade do fluido			mm²/sec	cSt					
Temperatura do fluido	°C	°F		No estado frio		No estado quente			
	Informações sobre a carcaça do filtro								
Posição no sistema hidráulico	Linha de sucção	Linha de p	oressão	Linha de retorno					
Pressão de trabalho			bar	PSI					
Fluxo nominal			I/min	US GPM					
Válvulas	Não								
	Sim:		Válvula by-pass	Válvula de fluxo reverso	Válvula de retenção	Válvula multifuncional			
Indicador de	Não								
contaminação	Sim:		Visual	Elétrico	Visual-Elétrico				
Tipo e dimensão de conexão									
Material de vedação	NBR (Buna®)	FKM/FPM	(Viton®)	Outro					
	Informações sobre o elemento filtrante								
Material do filtro	Fibra de vidro inorgânica		Fibra de poliéster	Filtro de papel	Fibra inoxidável	Malha em aço inoxidável			
Micragem do filtro		μm							
Pureza do óleo	(ISO 4406)								
Informações sobre									
a utilização									
Informações sobre as influências									
ambientais									
Outras informações / especificações									